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Business and Activity Section 

 

 

(a) Generated Commitments  

Top journal paper published: a journal paper, entitled “Machine learning-enriched Lamb wave approaches 

for automated damage detection” was published in a top Journal - Nanomaterials (Impact 

factor=3.031). PhD student Zi Zhang who mainly takes charge of this research was the first author.  

Conference paper accepted under virtual presentation duo to Covid-19 situation: two conference papers, 

entitled “Corrosion-induced damage detection and conditional assessment for metallic civil 

structures using machine learning approaches” and “Conditional assessment of large-scale 

infrastructure systems using deep learning approaches”, were accepted as conference papers and 

presentation under virtual presentation duo to Covid-19 situation, 2020 SPIE Smart Structures and 

Nondestructive Evaluation, April 26-30, Anaheim, California, USA. 
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(b) Status Update of Past Quarter Activities  

The research activities in the 6th quarter included: (i) Continuing efforts by decoding variance 

experienced from material and structural integrity in Task 2; and (ii) Modeling and decoding variance 

experienced from structural uncertainties in Task 4, as summarized in Section (d).  

 

(c) Cost share activity 

Cost share was from the graduate students’ tuition waiver.  

 

(d) Summary of detailed work for Tasks 2, and 4 

Tasks 2 and 4: Summary of continuing efforts by decoding variance experienced from material and 

structural integrity, and modeling and decoding variance experienced from structural uncertainties.  

 

6.1 Objectives in the 6th Quarter 

Large-scale networked on shore gas and liquid transmission pipelines are susceptible to degradation, 

corrosion and damages due to aging, loads and man-made disasters. Therefore, understanding of 

characteristics and performance, including detecting various mechanical damages, for these pipelines in-

service operation is needed to provide timely recommendations for maintenance and other precautious 

measures to avoid costly disasters.  

Thus, this study aimed to develop a new deep learning-based framework for decoding variances 

associated with mechanical damage and structural uncertainty.  

6.2 Data generated from computer modeling of guided wave through oil/gas pipelines 

6.2.1 Dispersion curves along pipeline 

Three main modes were generated when guided wave propagated along a hollow cylindrical pipe, 

including longitudinal mode (L mode) torsional mode (T mode) and flexural mode (F mode). The 

previous researches proved that the longitudinal L (0,2) mode achieves all pipe wall coverage because of 

the axisymmetric characteristics. According to Fig. 1, L (0, 2) mode in range 50 to 150 kHz has smaller 

dispersion, higher speed and lower distorted mode, which is commonly used in testing.  

  
(a) Phase speed (b) Group speed 

Fig. 1 Multiple mode of guided wave along a pipeline 
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6.2.2 Numerical simulation for pipeline 

Oil/gas pipeline was simulated using 3D FE modeling through COMSOL. The prototype of a steel 

pipeline was selected from the literature [10], where its dimension is 76-mm in outside diameter and 4 

mm in wall thickness, and with a length of 1500 mm. As shown in Fig. 2, the excitation signal with 

100kHz, D(t), was defined by a 5-cycle sine function operated with a Hanning window by the form:   

𝐷(𝑡)  =  𝐴(1 − 𝑐𝑜𝑠
2𝜋𝑓𝑐𝑡

𝑛
)sin (2𝜋𝑓𝑐𝑡) (1) 

where A is amplitude of the signal, fc is the frequency and n is the number of the period. This kind of 

axial loading pattern can generate a single guided wave in L(0,2) mode propagated in the pipe. The signal 

was defined in COMSOL to simulate the effect of the actuator, while the displacement was set at the one 

side. 
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Fig. 2 Excitation signal 

 

6.2.3 Design of Scenarios and Data Augmentation  

Four different scenarios were set in this research, including undamaged state, undamaged pipe with 

weldment state, notch-shaped damage without weldment state and notch-shaped damage with weldment 

state. To consider the uncertainty happened in actual situation, noise was added to the collected signals 

based on the signal to noise ratio (SNR) that represents the ratio of the signal strength to the background 

noise strength as: 

𝑆𝑁𝑅𝑑𝐵  =  10 log10(
𝑃signal

𝑃noise
) (2) 

where 𝑃signal and 𝑃noise are the average power of signal and noise by the dB scale, respectively. Six 

different noise levels, ranging from 60 dB to 120 dB, were selected to State # 1-4 for machine learning 

to check the sensitivity of the uncertainty due to noise. 

6.3 Data fusion 

6.3.1 Continuous wavelet transforms 

Guided wave exhibits non-stationary and nonlinear behavior. Time domain/frequency/time-

frequency analyses are effective to track the change of a system and its nonlinear behavior. The 

continuous wavelet transform (CWT) decomposes the signal into a time-frequency domain for analyzing 

nonstationary signals by scaling and shifting the basis wavelet. In this study, the multi-resolution wavelet 

analysis has been used to decompose the signal in time and frequency domain, while the continuous 

wavelet transforms of a continuous signal, 𝑥(𝑡), is defined by: 

𝑊𝑥(𝑎, 𝑏) = 𝑥 ⊗ ψ𝑏 ,𝑎 (𝑡) =
1

√𝑎
∫ 𝑥(𝑡)ψ∗(

𝑡 − 𝑏

𝑎
)𝑑𝑡

+∞

−∞

 (3) 
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where 𝜓  and 𝜓∗ are the basic function and its complex conjugate; a and b are the scale and translation 

factors, respectively. Eqn. (1) is to decompose x(t) into basic function Ψ((t-b)/a)Ψ (
t-b

a
), named the 

mother wavelet. The scale factor a is equal to 2. The frequency spectrum of the wavelet is stretched by a 

factor of 2 and all frequency components shift up by a factor of 2. The discrete wavelet transform can be 

treated as a band-pass filter: 

Wx(j, k) = ∫ x(t)2
j
2ψ∗(2jt − k)dt

+∞

−∞

 (4) 

 

Fig. 3 represented the time-frequency images of the signals under different noise level by CWT. The 

images were clear with the SNRs = 120 dB and 100 dB. As the noise level increased to 80 dB, the main 

feature part at the bottom was still existed, though some irregular texture was distributed in the image. 

While when noise level reached to 60 dB, the image showed the texture without the yellow part, 

suggesting that the noise interference significantly affected the original pattern of data.  

 

 
 

(a) SNR = 120 dB (b) SNR = 100 dB 

  
(c) SNR = 80 dB (d) SNR = 60 dB 

Fig. 3 Time-frequency images of signals under different noise levels 

 

6.3.2 CNN model training and validation 

To build the convolutional neural network, 2000 sample data was involved in this system, including 

60% of it for training, 20% of the data for validation and the rest for testing. The results of the first 

network trained by time series signals were shown in Fig. 4 representing the 80 dB, 70 dB and 60 dB 

respectively. With the SNR reduced, the error curves of train and validation were slowly converged to 

zero. Under low noise level, the characteristics between different classes were easy to be trained so that 

only the network only used 2 epochs to get the 100% prediction. When the noise level equals to 70 dB, 

the accuracy of the prediction was equal to 100% after 25 epochs’ training. The situation became terrible 

when SNR = 60 dB. After 100 epochs training, the error rate of the training data was 0, and the error of 
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the validation was about 0.1, which means the accuracy of the prediction was lower. However, the result 

could not prove that the network was bad. Because under this noise level, the signals were submerged by 

the noise. 
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(a) SNR = 80 dB (b) SNR = 70 dB 
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(c) SNR = 60 dB 

Fig. 4 Error curve 

 

The results of the second network trained by the time-frequency images was shown in Fig. 5. 

Analogically, the training error and validation error spent more time to close to zero when the noise level 

increased. Under 80 dB, the achieved accuracy was exceptional. The highest accuracies in training and 

validation was 100% at the third epoch, which increased sharply from 44% and 84% at the first epoch. 

When the noise level reach to 70 dB, the training and validation error rates were higher, as 0.67 and 0.55 

respectively. After training, the error rates dropped down quickly during the first 5 epochs which arrived 

to 0.17 and 0.14. Then, the rates decreased slowly and were equal to 0.005 and 0.02 at the twentieth 

epoch. However, the result in 60 dB was not expectable. The two error curves were not converged to zero 

after 50 epochs’ training. The main reason for this should be the input data was hard to identify because 

of the high noise.  
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(a) SNR = 80 dB (b) SNR = 70 dB 
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(c) SNR = 60 dB 

Fig. 5 Error curve 

 

6.4 Data generated from experimental test  

6.4.1 Experimental setup  

In this section, we attempted to generate data from experimental test, where equipment and 

environmental noises could be inherent in the measurement. Instead of testing a pipe, we selected 2-

dimensional plate as our samples. In the next stage, we planned to select pipe with and without weldment 

for our case study.  

as shown in Fig. 6, The experiment consists of generator, oscilloscope, Piezo actuators and a square-

shaped steel plate. The actuator array was distributed around the board. The generator submits the voltage 

signal with different mode. Then actuator changes the voltage signal into mechanical signal. The wave 

propagates in the steel plate. When it arrives the edge or damage of the steel plate, the signal can be 

reflected and received by the other actuators. Next, the piezo actuator changes the wave into voltage 

signal. Two damage types were designed, including a circular damage and a notch-shaped damage. 
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(a) Test setup 

  
(b) Test sample (c)Test sample 

Fig. 6 Test setup of guided waves in 2-D samples 

 

The dimension of steel plate was 20-inch width, 20-inch long and 1.6 mm thick. Two damages, 

notch-shaped and circular shaped damage, were designed for this test. 12 actuators were glued on the 

steel plate, as shown in Fig. 6, which included one located at 2 point for inputting the signal and eleven 

for receiving the signal. 

 

6.4.2 Signal collected from the test 

Received signal was shown in Fig. 7 which contained the 11 received signals in two different damage 

states. The signals were denoised by wavelet transform method. From the signals, the distinguish between 

these two damage types were obviously. Adding noise into these signals, the data enlarged in to 500 for 

each damage type. These data were acted as the input training the CNN for classification. 

 

 

 

Fig.7 Damage and actuators location in steel plate 

 

The result of the training and validation was shown in Fig. 8(a). The accuracies of classification in 

training and validation were reach to 100% at the second epoch which means that the signals were easy 

to be classified. In Fig. 8(b), the result of the testing was also 100% that all the testing samples were 

classified into the label they belong to. 
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(a) Error curve (b) Confusion matrix 

Fig. 8 Experiment results 

 

(e) Description of any Problems/Challenges  

No problems are experienced during this report period 

 

(f) Planned Activities for the Next Quarter  

The planned activities for the next quarter are listed below: 

o More experimental and numerical tests for continuing efforts by decoding variance experienced 

from material and structural integrity. 

o Modeling and decoding variance experienced from structural uncertainties. 

 

 


